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Abstract 
 

A computational model of semantic memory is described.  Based on simple principles 
borrowed from a computational account of episodic memory, it is shown that a 
memory model that is exposed to a large corpus of language can develop 
representation for words that look like their ‘meanings’. 

Résumé 
 

Ce rapport décrit un modèle informatique de mémoire sémantique. Partant de simple 
principes empruntés à la description computationnelle d’une mémoire épisodique, on 
démontre qu’un modèle de mémoire exposé à un vaste corpus de mots peut former une 
représentation de mots qui ressemble au sens de ces mots. 
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Executive summary 
 

In this report, a computational model of human semantic memory is described. The 
model borrows heavily from a popular account of episodic memory by Hintzman 
(1984) in which experiences are represented in memory as individual traces. A 
simulation of the model shows that despite not knowing anything about the meanings 
of words, the model is capable of constructing a vector representation of meaning. The 
model is evaluated on its ability to create meanings by comparing the meaning vectors 
of a set of words (representing four semantic categories) to each other.  Using 
multidimensional scaling, it is shown that the vector representations for words within a 
category are more similar to each other than vectors representing words between 
categories. The model is then discussed in terms of its usefulness as a potential tool for 
categorizing machine-readable documents. 

 

Sommaire 
 

Dans ce rapport, on décrit un modèle de mémoire sémantique humaine. Le modèle 
puise considérablement dans un compte rendu de mémoire épisodique par Hintzman 
(1984) où les expériences sont représentées dans la mémoire comme des empreintes 
distinctes. Une simulation du modèle montre que malgré sa complète ignorance du 
sens des mots, le modèle peut créer une représentation vectorielle du sens. On l’évalue 
en fonction de sa capacité de créer un sens en comparant les vecteurs de sens d’une 
série de mots (représentant quatre catégories sémantiques) entre eux. Une analyse 
multidimensionnelle démontre que la ressemblance est plus étroite entre les 
représentations vectorielles de mots de la même catégorie qu’entre les représentations 
vectorielles de mots de catégories différentes. La discussion concernant le modèle est 
exposée en fonction de l’utilité de ce dernier en tant qu’outil potentiel servant à classer 
des documents lisibles par machine. 

 

Peter J. Kwantes. 2003. Context as the building blocks of meaning: A retrieval model for 
the semantic representation of words. DRDC Toronto TR 2003-061. DRDC Toronto. 
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Introduction 
 

How do people learn the meanings of the words they encounter during their exposure 
to language?  More pointedly, how is it that we seem to know so much about language 
despite what seems to be a relatively limited exposure to it?  Landauer and Dumais 
(1997) offered one answer to the question in a computational model called Latent 
Semantic Analysis (LSA).   

A word’s meaning in LSA is a vector describing the frequency with which the word 
occurs in potentially thousands of contexts or documents.  The basic idea behind the 
model is that words that have similar meanings will tend to appear in the same or 
similar contexts (see Burgess & Lund, 1995 for a model that works on similar 
principles).  For example, key words appearing in documents about automobiles tend 
not to appear in documents about telephones.  

How does LSA work? The system starts by “reading” thousands of documents.  For 
each document (which could be an encyclopaedia entry or newspaper article), it 
tabulates the number of times each word in the document appears. To maintain word 
frequency information over several thousand documents, a term-by-document matrix 
is formed in which each word is described as a vector, the elements of which contain 
the number of times the word occurred in each document.  One can view each word’s 
vector as a description of a word as existing in N-dimensional space, where N is the 
number of documents, or contexts, in the training corpus. 

If words with similar meanings always occurred together in the same documents, the 
vector describing the documents in which a word appears would serve as an adequate 
and reliable characterization of its meaning.  Such “local” co-occurrences, however, 
fail to capture a deeper sense in which two words can be related.  For example, the 
terms, Toronto and Brisbane have a clear semantic similarity by virtue of the fact that 
they are both cities, they are both capitals, have a parliament, are run by a premier, et 
cetera.  Despite any similarity the terms may have in semantic space, there is no 
reason why Toronto and Brisbane should ever occur in the same document.  If the two 
never occur together in the same document, a term-by-document matrix will not pick 
up their similarity.  What is needed, is a mechanism that can exploit higher-order 
associations between the two terms.  For example, the system needs to know that 
Toronto and Brisbane are related because, even though the terms never occur in the 
same document, they appear in documents that share terms associating them like city, 
capital, and parliament.  In the paragraphs to follow, I describe, in fairly general terms, 
how LSA extracts semantic relationships from such higher-order similarities between 
words. 

LSA applies a statistical technique that is similar to Principle Components Analysis  
called Singular Value Decomposition (SVD) to the term-by-document matrix.  SVD 
decomposes the term-by-document matrix into three matrices.  As is shown in Figure 
1, a t X c sized matrix A where c < t can be decomposed into (a) an t X c column-
orthogonal matrix B, (b) the transpose of an c X c matrix C of row orthogonal values, 
and (c) an c X c diagonal matrix D of singular values composed of non-zero values. 
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If the three matrices are multiplied together, the original matrix (save for a bit of 
rounding error) is perfectly reconstructed.  The real key to the reconstruction of the 
original matrix lies in the diagonal matrix of the decomposition.  The diagonal matrix 
D represents how the B and C matrices of row- or column-orthogonal vectors are 
related to each other to re-create the  

 Figure 1. An Illustration of Singular Value Decomposition 

original term-by-document matrix. More specifically, each value of D represents one 
orthogonal dimension on which the values of the original t X c matrix differ. The 
magnitude of each value is an indication of the dimension’s salience.  That is, the 
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larger the magnitude of a value on the diagonal, the more important that dimension is 
in recreating the original matrix. 

To transform a word’s vector into one resembling a meaning, an arbitrary number of 
the most salient dimensions in the diagonal matrix are maintained, while the remaining 
ones are set to zero (in the simulations reported by Landauer and Dumais (1997), 
between the top 200 and 300 dimensions were maintained). Then, the three component 
matrices of the SVD are multiplied together to recreate the original term-by-document 
matrix.  By selecting the top few hundred dimensions however, the dimensionality of 
the component matrices are changed; now, instead of the terms differing on c 
dimensions, they are forced to differ on m (see the bottom part of the illustration in 
Figure 1)   

Because D no longer contains all the dimension information needed to recreate an 
exact copy of the original matrix, the reconstituted matrix is an approximation to the 
original based on the remaining dimensions.  LSA uses the information it has in the 
remaining dimensions to call upon higher-order relationships between words to fill in 
the cells of the word’s vector. Because higher-order relationships are exploited, 
Toronto becomes related to Brisbane because, despite the fact the two terms may never 
have appeared in the same document, the documents they appear in share other words 
like city, capital, and so on. 

How well does the technique work?  LSA’s power has been demonstrated in a variety 
of domains.  Thus far, it has been able to perform as well as a foreign student on the 
Test of English as a First Language (TOEFL; Landauer & Dumais, 1997), classify 
documents in a meaning-based query system (Dumais, 1994), match reviewers to 
submitted papers (Dumais & Nielson, 1992), and simulate some semantic priming data 
collected in the laboratory (Landauer, Foltz, & Laham, 1999),  

Landauer and Dumais (1997) were quick to point out that they did not believe that the 
brain performed SVD on co-occurrence information stored in memory.  They did 
claim however, that whatever psychological mechanisms are involved in creating 
semantic representations, it does something similar to what is accomplished by SVD.  
In this paper, I introduce a model of semantic representation that borrows some ideas 
from a well-known computational account of human performance in episodic memory 
tasks.  As such, the model is introduced as a first stab at a psychologically plausible 
mechanism that accomplishes much the same thing as SVD. 

The model 

The model’s architecture borrows some ideas from Minerva2 (Hintzman, 1984; 1986; 
1988).  However, whereas Minerva2 was designed to explain memory phenomena in 
episodic memory tasks, the model I describe next extends the basic ideas behind the 
model to semantic memory. 

Imagine that for every word you encountered, a trace (represented as a vector of 
features) of it was laid down in memory.  In addition to the features that describe the 
word (which are not described in this article), each vector also contained features 
uniquely describing the context in which you learned/encountered it.  Suppose further 
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that each time you encountered the same word, the vector describing it and its context 
was summed to the existing one.   

Figure 2 illustrates what the memory system looks like after committing three small 
documents to memory (function words have been excluded from the example). Each 
trace holds information about the contexts in which the word appeared.  I refer to the 
vector describing the contexts in which a word occurred as the context vector. Words 
that appear in the same context will share have the same context vector.  Likewise, the 
same word occurring in different contexts have different context vectors. 

How is meaning information retrieved from the model?  I treat the retrieval of meaning 
as a two-stage process. In the first stage, identified characters of a word are used as a 
probe to retrieve a word’s identity (its spelling and phonology) from memory.  In 
addition to the word’s identity, the context falls out of memory as well.  For example, 
in the three-document example in Figure 2, the word capital is represented by the 
vector, [0 1 1] because it only occurred in the second and third document/context.  
Hence, the composite context vector is a description of all the contexts in which the 
word occurs. 

After the composite context vector has been retrieved, the system has the information 
it needs to retrieve the meaning of the word.  In essence, the model asks the question, 
“What other words in my memory share contexts with the word I just retrieved”?  

WORD DOC 1 DOC 2 DOC 3 

BIG 2 0 0 

TRUCKS 1 0 0 

WITH 1 0 0 

TIRES 1 0 0 

TORONTO 0 1 0 

CAPITAL 0 1 1 

ONTARIO 0 1 0 

BRISBANE 0 0 1 

STATE 0 0 1 

Document 1: Big trucks with big tires. 

Document 2: Toronto is the capital of Ontario 

Document 3: Brisbane is a state capital 

Figure 2. The contents of memory after learning three documents 
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Meaning retrieval involves using the composite context vector as a retrieval probe to 
retrieve a copy of itself from memory.   

The composite context vector is applied to, and resonates with every context vector in 
memory.  The extent to which a context vector in memory resonates with, or is 
activated by, the probe is a function of their similarity.  I measure similarity as the 
vector cosine between the two: 
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Where P and T correspond to the context information contained in the probe and 
memory traces, respectively, and N represents the total number of contexts contained 
in memory.  The α value can be adjusted to control the activation of context vectors 
that are an imperfect match to the probe.  As α increases, the activation of imperfect 
matches in response to the probe vector decreases (in the simulation to follow, the 
parameter was set to 1). 

 After the context vectors in memory are activated, elements of each trace vector are 
multiplied by their activations (A) according to the formula: 

STT jiji ×= ,,  

After their activation, the elements of the activated trace vectors are summed across all 
the traces in memory to form a composite of the probe vector.  The formula for 
creating the composite vector, C, is:  

∑
=

=
Ntraces

i
jij TC

1
,  

The composite vector that is retrieved from memory can be thought of as a 
representation of the meaning of the word.  For example, consider the terms Brisbane 
and Toronto in the small memory system described in Figure 2. Notice that the two 
terms never occur in the same document. Hence, at the level of the term-by- document 
matrix formed during encoding, Toronto and Brisbane are orthogonal concepts. When 
the context vector for Brisbane is used as a probe and re-retrieved from memory, 
however, the new composite vector contains context information from the term capital.  
The story is much the same for Toronto; the composite vector that is formed by using 
the composite vector for Toronto as a probe also contains capital.  In sum, even though 
Toronto and Brisbane never occur in the same context, the model deduces that the 
terms are related because their contexts/documents have other words in common.   

In the simulation to follow, the same idea was applied to a much larger corpus of text.  
The model encoded one year’s worth of articles from an Australian newspaper.  The 
corpus contains approximately 2 million words of text over about 30,000 articles.  



  

6       DRDC Toronto TR 2003-061 

 

Before I go on to discuss the simulation results, I will go over some details pertaining 
to the pre-processing on the co-occurrence matrix that occurs before retrieval. The first 
stage of pre-processing involved excluding terms on the basis of three properties. 

Promiscuity: A word that occurs in almost every document carries little information 
about the message’s topic (e.g., function words like the) 

Monogamy: A word that occurs often but only in one document carries little 
information about what it could mean. In order to get a good representation of a 
word’s meaning, there needs to be variety in the contexts/documents in which it 
appears.  In the simulation reported below, a word needed to appear in at least two 
contexts to be encoded. 

Celibacy: A word that virtually never occurs in the corpus of text does not carry much 
information about what it could mean.  Only words that occurred at least twice in the 
corpus were included. 

After filtering, the resultant matrix contained 86,125 unique terms taken from 38,525 
newspaper articles.  Following the example set by Landauer and Dumais (1997), the 
next step in pre-processing, the cells of the term-by-document matrix are transformed. 
First, each cell’s frequency is transformed to its log.  Then, the value is divided by a 
value that is a function of the entropy of the word across the contexts over which it 
appears. In weighting an entry by its entropy, each cell provides information about 
how uniquely a term is anchored to a context.   More formally, each cell of a word’s 
trace is transformed thusly: 

∑−
+

=
β))ln((

)1(ln(
pp

Wf
W i

i  

Where W is the raw frequency of word i in a context. The p is equal to the transformed 
frequency (i.e., the numerator of the term) of a word divided by sum of the frequencies 
of a word across contexts (C); i.e., 

∑
=

+

+
= C

c
i

i

Wf

Wfp

1
))1(ln(

))1(ln(  

 and β is an exponent that adjusts how strongly terms are anchored to the contexts. For 
the simulation reported below, the parameter was set to 2. 

A simulation 

To see whether the retrieval model could deduce semantic relationships among terms, 
the semantic representations for words from four categories were analysed using 
multidimensional scaling to determine if the model derived meaningful semantic 
representations. 
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Method 

Thirty-two items representing four categories for words were used (places, 
domesticated animals, money, and modes of transport).  The model retrieved the 
meaning vector for each word.  Then, using the vector cosine as a measure of 
similarity between the meaning vectors of every possible pairing of words, a matrix of 
the similarities among them was formed.  

Results 

The similarity matrix was analysed using multidimensional scaling (MDS).  MDS is a 
technique that reduces coordinates from high to low dimensional space while 
simultaneously attempting its best to maintain the appropriate distance among points.  
For the simulation below, the MDS reduced the similarity matrix to two dimensions so 
that the terms could be plotted in (x, y) coordinates and easily visualised.  Figure 3 
shows the solution found by the reduction.  As is clear in the figure, terms that are 
related to each other are, in general, clustered close together relative to unrelated 

Scatterplot 2D
Final Configuration, dimension 1  vs. dimension 2
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Figure 3. MDS solution for the full semantics model. 
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concepts. Terms that are unrelated tend to be separated in semantic space.  In another 
analysis of the output, I calculated the average similarity among terms within a 
category (excluding its similarity to itself) and between categories.  Figure 4 shows 
clearly that, on average, terms are reliably more similar to other items within the same 
semantic category than with any other.   

Discussion 

The model described above works for similar reasons as LSA.  Local co-occurrences 
of words are not adequate to capture semantic relationships between words.  In other 
words, while two words may appear in the same context, they may or may not be 
semantically related.  By the same token, two words that never appear in the same 
document are not necessarily unrelated.  In order to capture semantic relationships, 
higher-order relationships between words must be exploited.  In the example from 
Figure 2, Toronto and Brisbane can be related concepts despite them not occurring in 
the same document.  Their relationship develops because the documents they appear in 
share other words like capital, residents, population, and city.  Put simply, the 
semantics model uses what it knows about a word’s context, and makes a guess about 
what other contexts it might appear in, and the frequency with which it might appear in 
them. Albeit by different means, LSA does the same thing—it guesses how often a 
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Figure 4. Mean within- and between-category similarities for each group of items. 
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term occurs in each of several documents after the dimensionality of the original term-
by-document matrix has been reduced by the SVD.  

Deconstructing the model’s output 

Why do semantic relationships between words emerge from the model? Is the retrieval 
component responsible for them or is first-order co-occurrence information driving the 
similarities between terms?  To answer this question, the same simulation was re-run 
with two versions of the model.  In the first version, the retrieval stage was skipped 
and the similarity between pairs of terms was measured from the first-order, or raw, 
co-occurrence information.  In other words, how often the words appeared in the same 
contexts.  The second version of the model created a meaning vector entirely from 
second-order co-occurrence information.  Specifically, the meaning vector (i.e., the 
composite vector from memory) created for a word in a pair excluded a copy of itself 
from memory and the other member of the pair. 

After the two models had been run, the same MDS analysis was performed on 
resultant similarity matrices.  Figures 5 and 6 show the MDS solutions for the first-
order and second-order co-occurrence models, respectively.  As is clear in the figures, 
both versions of the model seem to be clustering semantically related terms together.  
To show that both versions of the model seem to be clustering semantically related 
items, the average within- and between-group similarities were calculated for each.  As 
can be seen in Figure 7, related terms are more likely to occur in the same context than 
different ones. Not a surprising finding—words that are related are often discussed in 
the same context.   The important question, however, is whether the first-order co-
occurrence information between the pairs of words used in the simulation is 
responsible for the model’s ability to deduce that two words are semantically related.  
The issue is potentially fatal to the model; if true, the model would be unable to tell 
that two words were related unless they occurred in the same document. What is more, 
the model would assume that two words are related simply because they appear in 
some of the same documents. 

Figure 8 contains the average within- and between-group similarities of words based 
entirely on second-order co-occurrence information.  Note the similarity between the 
second-order model and full model. The two graphs are almost identical.  That the 
graphs (and the MDS solutions) are essentially the same, suggests that the first-order 
co-occurrence information plays little if any role in creating the meaning.  Instead, the 
meaning vector that is retrieved from the full model is almost entirely made up of 
second-order co-occurrence information. To illustrate the point, I plotted each item’s 
average similarity to the items of each of the four groups for the full model against the 
first- and second-order models.  The plot is shown in Figure 9.  As can be seen in the 
figure, there is a perfect correspondence between the  
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Figure 5. MDS solution for the first-order co-occurrence model. 
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Figure 6. MDS solution for the second-order co-occurrence model 
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similarities of the full and second-order models. The first-order co-occurrence 
information does not contribute as consistently to the full model’s meaning vector as 
does the higher-order information.  The influence that the first-order co-occurrences 
information has on the meaning vector is overpowered by second-order information 
because, while the former represents the similarity of two context vectors in a pair, the 
latter’s vectors includes the influence of thousands of memory traces that are summed 
during retrieval. 

A final point to address in this section is the issue of whether the model needs to 
perform a retrieval operation at all. As the MDS solution in Figure 5 and the bar chart 
in Figure 7 show, the raw, or first-order, co-occurrence information about the terms 
used in the simulation seemed to be adequate for separating the concepts into semantic 
neighbourhoods. Why should we bother with the computationally expensive retrieval 
stage? While it is true that, in this case, related terms showed a greater tendency to co-
occur in documents than unrelated terms, in the end, such raw co-occurrence 
information is not guaranteed to capture the similarity between terms. As mentioned at 
the beginning of the discussion section, many related terms will never occur in the 
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Figure 7  Average within- and between-group similarities of words based entirely on first-order 
co-occurrence information. 
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same context. Hence, if the system relied solely on raw co-occurrence information, 
several relationships between terms would be undetected.   

 

 

Implications of the ideas embodied in the semantics model 

The semantics model represents a potential unification of formal models of episodic 
and semantic memory.  The model was built to simulate how people form 
representations for the meanings of words they know—so-called semantic memory.  
As discussed above, however, with a couple of minor exceptions, the semantics model 
is, architecturally, almost identical to Minerva2 (Hintzman, 1984; 1986; 1988), a well-
known model of episodic memory designed to simulate human performance in 
laboratory-based memory experiments.  The similarity between the two models 
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Figure 8  Average within- and between-group similarities of words based entirely on second-
order co-occurrence information. 
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suggests that perhaps the same basic memory system underlies both forms of 
knowledge. 

From a psychological perspective, the model takes a unique perspective on the 
representation of semantic knowledge. In essence, it postulates that we don’t represent 
semantic information. Instead, all that is required of memory is that it stores the 
contexts that are associated with the terms we encounter, and that a representation of 
the meaning of an item is constructed from the contextual information during retrieval. 
The idea that we store the contexts associated with an item is not controversial. Indeed, 
Dennis and Humphreys (2002) proposed a model of episodic memory that uses the 
interaction between experimental context and pre-existing contextual information in 
memory to explain several well-researched phenomena found in episodic memory 
tasks.   

The idea that semantics are constructed rather than stored may also serve as an explanation for 
how a person’s own definition of a word can change over time.  Suppose a banker switches 
occupations to that of ferryboat captain. What does the word ‘bank’ mean to that person?  I 
suspect that before taking a job on the ferry, “bank” was associated with money, but now is 
more associated with the part of the river his boat must avoid hitting. What changed? I believe 
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plotted against the same items in the first- and second-order co-occurrence models.  . 
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that the new use of the word changed its contextual representation in memory; a change that, 
in turn, transformed the representation of its meaning.  An appealing feature of my 
interpretation for the dynamic nature of meaning is that it requires no mechanism for changing 
it other than the addition of new contextual information to memory. 

Conclusion 
The semantics model was designed to retrieve the meanings of words from a matrix 
containing the frequency with which words occur across approximately 30,000 
documents. It stands as a psychological theory of how people develop semantic 
representations for words, but it has possible applications in other more practical areas. 
The same operations on the same matrix could be used to retrieve the meaning of a 
document.  While not that interesting from a psychological perspective, the system 
might have uses as a filtering system for machine-readable documents. For example, 
the system could be set up to cluster e-mails according to their topics. If an agency was 
interested in monitoring emails on a particular topic, they system would be able to 
single out those emails that were suspect.  Furthermore, because emails are tagged 
with date, author and recipient information, the system could be used as part of a 
system that can uncover the social networks whose correspondence deserves attention.  
An attractive feature of the system is that it does not require any a priori knowledge of 
a language.  The same system can develop semantic representations for any 
language—indeed, the system is so blind to the language it encodes it could develop 
semantic representations for whale and dolphin song if the materials could be parsed.  

Whatever areas it comes to be used in as a tool, the semantics model described above 
represents a unique treatment of the problem of semantics as a field of psychological 
enquiry. It represents a first attempt at the unification of episodic and semantic 
memory models. In particular, it shows that the same basic architecture can be used to 
simulate behaviour in two fields of memory research that have almost always been 
studied separately. This final point is important because memory researchers have 
known for a long time that semantic information in memory can exert a marked 
influence on performance in tasks that examine episodic memory. The semantics 
model offers a framework to explain how the influence occurs. 
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